MTH 305: Practice assignment 1

1 Countability

- (i) Let S be an infinite set. Show that the following statements are equivalent.
 - (a) S is countably infinite.
 - (b) There exists a surjective function $f : \mathbb{N} \to S$.
 - (c) There exists a bijective function $g: S \to \mathbb{N}$.
- (ii) Show that a countable union of countable sets is countable.
- (iii) Show that a finite cartesian product of countable sets is countable. Is a countably infinite cartesian product of countable sets countable? Explain why or why not.
- (iv) Show that if S is an uncountable set and $T \subset S$ is a countable set, then $S \setminus T$ is uncountable. Use this to show that the set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.
- (v) The set of infinite sequences of binary digits (i.e. 0 and 1) is uncountable.
- (vi) Show that the power set of a countably infinite set is uncountable.

2 Mathematical induction

Establish the following using the first (or second) principle of mathematical induction.

(i) $1 + 3 + \ldots + (2n - 1) = n^2$, for $n \ge 1$.

(ii)
$$1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
, for $n \ge 1$.
(iii) $1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$, for $n \ge 1$.
(iv) $a^n - 1 = (a-1)(a^{n-1} + a^{n-2} + \ldots + a + 1)$.
(v) $n! > n^3$, for $n \ge 6$.
(vi) $(1+a)^n \ge 1 + na$, for $n \ge 1$, whenever $a > -1$.
(vii) If $a_1 = 11$, $a_2 = 21$, and $a_n = 3a_{n-1} - 2a_{n-2}$, for $n \ge 3$, then for $n \ge 1$,

$$a_n = 5 \cdot 2^n + 1.$$

(viii)
$$\frac{1}{2} + \frac{2}{2^2} + \ldots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$

3 Binomial theorem

Establish the following assertions.

(i) The Binomial theorem.

(ii)
$$\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$$
, for $n \ge k \ge 1$.
(iii) $\binom{n}{k} = \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}$, for $2 \le k \le n-2$ and $n \ge 4$.

(iv)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

(v)
$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}.$$

(vi)
$$\sum_{k=1}^{n} \binom{2k}{2} = \frac{n(n+1)(4n-1)}{6}$$
, for $n \ge 2$.

(vii)
$$\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \binom{n}{k} = \frac{1}{n+1}.$$

(viii) $\binom{n}{r} = \binom{n}{r+1}$ if and only if n is odd and $r = \frac{n-1}{2}.$
(ix) $2^{n} < \binom{2n}{n} < 2^{2n}$, for $n > 1$.